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Two-finger selection theory in the Saffman-Taylor problem
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We find that solvability theory selects a set of stationary solutions of the Saffman-Taylor problem with
coexistence of twainequalfingers advancing with the same velocity but with different relative widthand
N\, and different tip positions. For vanishingly small dimensionless surface tedgjan infinite discrete set
of values of the total filling fractiol\=X\,;+\, and of the relative individual finger width=\,/\ are
selected out of a two-parameter continuous degeneracy. They scate &~ d3” and|p—1/2~d3*. The
selected values ok differ from those of the single finger case. Explicit approximate expressions for both
spectra are giveriS1063-651X99)50611-9

PACS numbes): 47.54+r, 47.20.Ma, 47.20.Hw, 47.20.Ky

The Saffman-Taylor problem has played a central role irthis method[6,8], it has been shown that it leads to the
the field of interfacial pattern selection in the last few de-correct qualitative picture of selection and the correct scaling
cades[1]. It deals with the morphological instability of the of solutions[8]. It is therefore suitable, for simplicity of cal-
interface between two immiscible fluids confined in a quasi-culus and presentation, for an exploration of situations such
two-dimensional(Hele-Shaw cell, when the less viscous as the present one.
fluid is displacing the more viscous one in a channel geom- Our starting point is the dynamical equation for the con-
etry [2]. In particular, in their seminal worj3] Saffman and ~ formal mappingf(w,t), which maps the interior of the unit
Taylor called the attention to the so-called selection problemcircle in the complex planev into the viscous fluid region,
namely, the fact that a unique fingerlike steady state solutioiith the unit circlew=e'? being mapped into the interface.
is observed, whereas a continuum of solutions is possible ifVithout loss of generality, we will assume a channel width
surface tension is neglected. Full analytical understanding ofV=2 in the y direction (with periodic boundary condi-
the subtle role of surface tension acting as the relevant sele§ons) and a velocityJ..= 1 of the fluid at infinity. We define
tion mechanism was not achieved until much more recentlyhe velocity of the stationary solutions of the interfacelas
[4—8). The resulting scenario of selection has been shown te= 1/A where is the total filling fraction of the channel by
apply with some generality to other interfacial pattern form-the invading fluid. The Cartesian coordinates in the frame
ing systems, most remarkably in dendritic groyih9]. On  moving with velocity U are given byz=x+iy="f(w,t)
the other hand, despite the relative analytical tractability of—Ut. The mappind (w,t) contains a logarithmic singularity
the problem, thelynamicsof competing fingers is far from Wwhich is due to the fact that we are mapping an unbounded
being understood even at a qualitative level. Recently, it hagomain(the semiinfinite stripinto the unit circle, in such a
been shown that in general surface tension may affect theay thatf(w,t)+Inw is always an analytic funtion in the
long time dynamics in an essential wgh0]. In the case of interior of the unit circle. The exact dynamical equation for
the dynamics of finger arrays, the effect of surface tensioihe mapping can be written in the form
becomes particularly dramatic, showing that the qualitative
picture of finger competition based solely on the concept of i * —1—
screening of the Laplacian field or the global instabifityl | Re1F4H (@01 (4.1)]=1=UdodgHl ], W
of a periodic finger array is insufficiefl2]. ) , , )

Existence of multifinger stationary solutions of the zeroWhich can be easily derived, for instance, from R&{. Here
surface tension problem has been known for a long time. Ifo 'S 2@ dimensionless surface tension defined ds
Ref.[12] it has been emphasized that multifinger stationary= 9P“/12uU, wherea is the surface tensior is the gap,
solutions are relevant to the issue of the dynamical role oft"d « IS the viscosity. The curvature can be expressed in
surface tension. In particular the equal-finger fixed point ha$erms ofx(¢) andy(¢) as
been pointed out as the relevant saddle point to describe

competition dynamics. In connection with the phase flow PXI N — T2V X

2 . . dX0pY ~ Yy
structure around this fixed point, the problem of existence of k()= > >3 2
unequal-finger fixed points withonzerosurface tension has [(d4y) "+ (94%)°]

been posed12]. Here we will extend selection theory to

search for such solutions in the case of two fingers. We wilH is a linear integral operatdHilbert transform which acts

follow the formulation of Hong and Langdi5], which is  on a real 2r-periodic functiong(¢) according to the defini-
based on a Fredholm solvability analysis of a non-selftjon

adjoint problem defined through linearization about the zero

surface tension solution, together with WKB and steepest 1 o 1

descent techniques. Despite the admitted objections to the H,[g]= _Pj g(s)cotg= (¢—s)ds. 3)
full quantitative validity of the approximations involved in ¢ 2w Jo 2
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do=0. Both\ andp can be varied continuously within their
natural range. The difference, between thex coordinate of

\ the two tips is given b
AW . ; p g y
A&
X 1-)\)In ﬂ 9
! w = 1+cospm’
i These solutions are precisely those studied in Riex].
AW ! The present formulation has some interesting advantages
1

over the traditional approach of McLean and Saffriélnfor
instance, in that the zeroth order solution is obtained natu-
rally as an explicit outcome of the method and that it is more
amenable to generalization, for instance to a larger number
FIG. 1. Typical configuration of a two-finger stationary solution. of fingers[13].

We now proceed by assuming ¢)=Xq( @)+ doX1( )
It follows from Eq. (3) that the functionA(w) defined by and linearizing orx,(¢) but keeping all singular terms nec-
A(e'?)=g(¢)+iH +[ 9] is analytic in the interior of the unit essary for selectior{Nonlinear effects are expected to intro-

k.

circle, and InfA(0)]=0. duce only a slight quantitative correction to the final spec-
In the steady state we will havgf* (#,t)=U, and Eq. trum of selectior{6,8].) Using the relationy;(¢)=H 4[x,]
(1) will read we get
dy_ dHlf,[K] d2X [ ]
Vag 1 Vg @ do gz *0op ()" j; Sir(e=u(d), (10

We search for solutions of the generic type described in Fig. _
1. The total filling fraction is split into two contributions Wherer(¢#) andp(¢) are given by
Ni+A,=N\, and we define as a new selection parameter the

relative finger widthp=X,/\. For simplicity we will con- l9( )| 1 812
sider fingers which are axisymmetric and for convenience we r(¢)= 24— [a(¢)]?+ —2c052¢> , 11
will fix the tip positions atg= 7/2,37/2, for all\ andp. The q*(¢) B

filling fraction \ ranges from 0 to 1. We take,<\; so that

p ranges from 1/2 to 1. In these conditions the two fingers 1 cos¢

correspond to the intervalsp,=(7/2)(1—2p) to ¢, p(cb):E OOk (12)
=(7/2)(1+2p) and ¢, to p3=27+ ¢, respectively.

After integration overg of Eq. (4) we obtain ) ) o

with  q(¢)=sing—cospm and B=N/(1—\). Explicit
_ g knowledge of u(¢) is not necessary for the solvability
Uy()=d—UdoHyl k] +c(4), ® analysis. First order derivatives are subdominantigs:0
and have been omittgd].

The linear operator on the Ihs of E4.0) can be seen as a
2X 2 matrix operator acting on a vector of two components
X1 (¢) and x; (¢), which are defined respectively on the
intervals (¢4, ¢,) and (¢4, ¢3). Inserting an ansatz of WKB
form with a point of stationary phase of the solution in the
upper (or lowen complex plane[5] one can show, using
steepest descent techniques, that the off-diagonal terms of

wherec(¢) is a piecewise constant function. The values it
takes at the intervalsd{;,®,) and (¢,,¢3) differ by the
finite amountm(U — 1), which accounts for the discontinuity
of y and the finite flux at the point&, ¢,.

After Hilbert transform of Eq(5) and using thaH(zﬁ[g]
=—g(¢), we obtain

~dor(#)+X(¢)=Xo(¢), ©) Eq. (10) lead to exponentially small contributions. As a con-
sequence, to leading order the problem is decoupled into two
y(é)+ ¢p=const-H 4[x], (7)  separate problems defined in two disjoined intervals. Simi-

o _ - larly, neglecting exponentially small terms, the integral part
where Eq.(7) is just an expression of analyticity ¢{w,t)  of the diagonal terms takes a purely differential form in the
+Inw. The functionxo(¢) is found explicitly asXo(¢)  complex plane [5]. The change of variablesy

=Hylg] with g(¢)=(A—1)é+c(¢), and by construction = — g~ cosp/(sing—copm) maps separately each of the
it corresponds to the solution of the zero surface tensiomwo disjoint intervals above into the whole real axis
case. In our case it reads ne(—,»). Therefore, to leading order we end up with two
(complex differential equations of the form
Xo(#)=(1—N\)In(2|sin¢p—cosp|). (8)
_ 3 o d2x; .
Completed withyy( )= — N[ ¢p+c(¢)], this gives a two do—2+Q:(7l)XI= R.(7), (13

parameter class of exact solutions of the type of Fig. 1, for
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which are mutually independent but linked through the de-
pendence on the parametersand p. More details of this
derivation will be presented elsewhdrE3]. We define two
solvability functions as

reupido= [ X REdn, ag

wherex*(#) are eigenfunctions of the null space of the (2) (b)

adjoint operators of the respective homogeneous equations FiG. 2. Deformation of the steepest descent contour of integra-
[13]. To enforce solvability we now have to impose the SI-tion in the complexy plane with3>1 andp>1 (a) for A , (b)
multaneous vanishing of the two solvability functions for A

A+ (\,p;dp)=0. These two conditions will fix the discrete

spectra of possible values of bathandp. 1 (1-)\)2 1
Within the WKB approximation, the two solvability func- —1(B,p)=m— (17)
tions take the form \/d—o A 2’

® with m=1,2, ... andwhere
A-Oupido)= [ GL(me @ -0y,

u u3H(u: B,
1(B,p)= _icotgpwfo ( uTHUAP) du (18

where Usg—u)(u;—u)*?
2(1—in" )Y 1+in")% with the regular part of the integrandH(u;s,p)=(2
W, (n)_lkﬁf 14 3272 —u)Yuy—u) " Hu,—u)" M2 and uy,=1FUBsinpm,
Ugy4: 11 1/,8
cospr Finally, f.rom conditionAf()\,p;do) =_0, expressing Eq. _
x| 1F ——— dn'. (16 (17) to leading order and using properties of hypergeometric
V1+ 72 sin prr functions the two selection conditions can be combined to
In order to estimate the solvability functions in the steepest ad(13]
descent approximation, only the form ¥f..(#) is required. 1
The singularity structure o¥ . () is such that the casgs —(2\—1)%4=n, (19
=1/2 andp# 1/2 must be treated separately. The first case \/d—o
(two identical fingers degenerates into the usual single fin-
ger problem. Fop> 3, a more complicated singularity struc- S(a)= l( m— }) (20)
ture is revealed. In the upper half complex planermpfwe n 2)’

find that d¥ . (#)/dnp has a new branch point ap
=i/ sinpm, in addition to the singularities that were presentWith n=1,2, ... andwhere
in the single finger problem, namely, a branch pointyat
=i and a pole at/B. On the other handjV _ (%)/d#» has 3\2m E (§ E
the branch point apy=i and the new one ay=i/B sinpm, (1 4’2’
whereas the pole ait/B is suppressed. Since Asinpw S¢ (Z)
>1/B, we obtain tha{3>1 is a necessary condition for the
first solvability functionA . (\,p;d,) to oscillate, and there- ,F, is a hypergeometric functiofil4] and a=(7?%/4)(p
fore generate zeroes. We thus recover the conditiort/2 ~ —1)?/(2n—1) is of order ¢l)° and ranges from 0 to 1.
of the single finger case, but now for the total filling fraction.  Equation(19) determines a set of discrete valuesof
The equivalent condition foA _(\,p;dg) is Bsinpm>1 so  Notice that these are given independentlypdfut the set of
that the new singularity aty=i/B sinpw stands belown  values are inserted between those of the single finger case
=i. This condition also implies that in the contour integra- (p=1/2), which in the same approximation are given by
tion for A, (\,p;do) we will always pick up a contribution (2x—1)*4\/dy=n—1% in place of Eq.(19). On the other
from this new singularity. hand, the left-hand sidghs) of Eq. (20) is a monotonically

By deforming the contour integral as indicated in Fig. 2, decreasing function ok which varies continuously from 1/4
and following Ref.[5] in identifying the crossover from os- (at «=0) to 0 (at «=1) [14]. Solving Eq.(20) for a pro-
cillating to nonoscillating behavior of the solvability func- duces solutions witlp# 1/2. These will exist whenevemn(

-bl@

S(a)= )(1 a)¥ (21

tions, we obtain the scaling of both andp with dy to be  —1)/n<%. For a givenn, the solutions are labeled by
(AN—3)~ dZ/3 and |p— 2|~d s According to Eq.(9), the  =1,2,... up to thénteger part of G+ 1)/4. Therefore, the
resulting scaling for the tip dlfference s, d1/3. first solution withp+ 1/2 will appear ah=3 and givesp
An explicit (approximatg discrete spectrum of selected —3|=0.3886 d(l)’3+ ... . For fixedm, p is an increasing
values ofA andp for smalld, will be given by the condition function of n (like \), but for fixedn, p has its maximum
cog (V. (i+0)—¥.(i—0))/2i\de]=0. value atm=1 and then decreases with (see Fig. 3 The

From the conditiorA _(\,p;dg) =0 we thus obtain spectra derived here must be taken with some caution, since
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40 ‘ ‘ - - and therefore to gain insight into and qualitative understand-
o ing of the dynamics. In particular, the location of these new
o fixed points will definitely affect the path in phase space
a0 | .- ] describing the transient dynamics from a nearly equal finger
. . array towards the single finger attractor. This point of view
. - was developed in Refl2] to study the dynamical role of
P surface tension. In that spirit it was pointed out that a gener-
20 1 s o me2 s alized solvability scenario of selectidr,4] could hold to
d e s some extent for the dynami¢42,13.
We conclude by remarking that, although the present
_ A solvability analysis is not a rigorous proof of the existence of
- A solutions, it reveals by itself a quite unexpected richness of
. » o™ the problem. It would be interesting to search for these solu-
. * r'e tions numerically or by other more rigorous me@@s$]. The
00 4 s 12 16 20 sole existence of the predicted solutions and its presumable
n generalization to a larger number of fingers has important
consequences on the physical picture of finger competition,
which turns out to be much more complex than common
arguments of Laplacian screening seem to suggest. The com-

they are only approximate. An exact calculation to lowestTON picture, according to which fingers slightly ahead es-

X . . cape from their neighbors, is not necessarily valid in general
order indg should include nonlinear effects and a proper P 9 Y g

treatment of the turning points in the WKB analysis, but thebecausg of_the existence of_grpvvth modes with unequa{
; o competingfingers. For vanishingly small surface tension,
corrections are expected to be quantitatively snhab].

More details will be presented elsewhéte]. however, these modes collapse and only the equal-finger

Concerning the stability of these solutions, it is reasonablemur[Iflnger mode p=1/2) survives as a stationary state. Fi-

to presume that, in general, they will be globally unstable hally, .given _the genericity of the_.solvab.ility meghanism of
such as established numerically for the equal finger arragc cction. this opens the possibility of finding similar solu-

(p=1/2) in Ref.[11]. This implies that they would only be Yions in related problems such as needle crystal growth or

directly observable as a transient slowing down of the comY'ScOUS fingering in circular geometry.
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FIG. 3. Spectrum of as a function ofn for different values
of m.
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